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Abstract 
In spite of their importance, third or higher moments of portfolio returns are often neglected in 
portfolio construction problems due to the computational difficulties associated with them.  In 
this paper, we propose a new robust mean-variance approach that can control portfolio skewness 
and kurtosis without imposing higher moment terms.  The key idea is that, if the uncertainty sets 
are properly constructed, robust portfolios based on the worst-case approach within the mean-
variance setting favor skewness and penalize kurtosis.   
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1. Introduction 
 
The traditional Markowitz model takes the expectation and variance of a portfolio return as the 
performance and risk measures and determines the optimal portfolio by solving a quadratic 
program. From the practitioner’s perspective, the skewness and kurtosis are also important. 
When the portfolio return is negatively skewed, it is more likely to have an extreme left-tail 
event than one in the right-tail. Thus the typical investor prefers more positively skewed return 
distributions. For instance, a more positively skewed portfolio has better Sortino ratio (Sortino, 
1991) and lower semi-deviation. Similarly, a portfolio with smaller kurtosis tends to have less 
extreme events, thus is preferred by most investors. 
 
Obviously, as the traditional mean-variance approach exclusively deals with the first two 
moments, a revised approach is required to incorporate and control the third and fourth moments 
when constructing a portfolio. The most straightforward approach would be to introduce new 
terms for the portfolio skewness and kurtosis in the objective function. To see this, let us first 
consider the traditional mean-variance formulation as follows. 
 

maxೢ∈಴ ݓᇱߤ െ  (1) ݓߑᇱݓߚ
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where ܥ is a convex subset of the hyperplane ሼݓ ∈ Թ௡|∑ ௜௜ݓ ൌ 1ሽ, ߤ ∈ Թ௡, ߑ ∈ Թ௡ൈ௡ are the 
expected return and covariance matrix, respectively, and ߚ ൐ 0 is the parameter to reflect 
investor’s risk aversion. 
 

Then, given a coskewness matrix ܯଷ ൌ ॱሾሺݎ െ ॱݎሻሺݎ െ ॱݎሻ′ ⊗ ሺݎ െ ॱݎሻ′ሿ ∈ Թ௡ൈ௡మ for the 
random return vector ݎ ∈ Թ௡ and Kronecker product ⊗, the third central moment of portfolio 
return ݓᇱݎ is ܵሺܯ,ݓଷሻ ≔ ॱሺݓᇱݎ െ ॱݓᇱݎሻଷ ൌ ݓଷሺܯᇱݓ  ሻ. Similarly, for a cokurtosis matrixݓ⊗

ସܯ ൌ ॱሾሺݎ െ ॱݎሻሺݎ െ ॱݎሻ′ ⊗ ሺݎ െ ॱݎሻ′ ⊗ ሺݎ െ ॱݎሻ′ሿ ∈ Թ௡ൈ௡య, its fourth central moment is 
ସሻܯ,ݓሺܭ ≔ ॱሺݓᇱݎ െ ॱݓᇱݎሻସ ൌ ݓସሺܯᇱݓ  .ሻݓ⊗ݓ⊗
Consequently, the mean-variance formulation could be modified by adding third and fourth 
central moments and solving the optimization problem 
 

maxೢ∈಴ ݓᇱߤ െ ݓߑᇱݓߚ ൅ ଷሻܯ,ݓሺܵߛ െ ,ߚ ସሻ for parametersܯ,ݓሺܭߜ ,ߛ ߜ ൒ 0. (2) 
 
While problem (2) is intuitive, there are two critical issues. First, the third central moment term 
ܵሺܯ,ݓଷሻ is a cubic function, thus it makes problem (2) non-convex, which causes a significant 
increase in computational cost. Second, as the coskewness matrix ܯଷ is 3-dimensional, the 
number of parameters is of the order of ݊ଷ, which makes it practically impossible to obtain 
reliable estimators. The same issues apply to the kurtosis term, only with more difficulties. The 
main objective of this study is to develop an approach that can control higher moments of 
portfolio returns within the mean-variance framework without directly imposing third and fourth 
moment terms in the formulation.   
 
2. Models and Theories 
 
Let ݎ ∈ Թ௡ be the random vector representing returns of ݊ risky assets. We assume it has finite 
moments up to order four. Also, let ݎ௜,௝ ∈ Թ௡ for ݅ ൌ 1,… , ݆ and ,ܫ ൌ 1,… ,  be independent and ܬ

identically distributed (i.i.d.) samples of ݎ. Let ̂ߤ௜ ൌ
ଵ

௃
∑ ௜,௝௝ݎ  and ߑ෠௜ ൌ

ଵ

௃ିଵ
∑ ൫ݎ௜,௝ െ ௜,௝ݎ௜൯൫ߤ̂ െ ௜൯′௝ߤ̂  

be the sample mean and sample covariance matrix for the ݅-th sample set, respectively. We also 

define a joint uncertainty set of ൫̂ߤ, ෠൯, ܷሺఓෝ,෡ఀሻߑ ൌ ൛൫̂ߤଵ, ,෠ଵ൯ߑ … , ൫̂ߤ௜, ,෠௜൯ߑ … , ൫̂ߤூ,  ෠ூ൯ൟ. Now, let usߑ

consider the robust version of problem (1).  
 

maxೢ∈಴ minሺఓෝ,෡ఀሻ∈௎൫ഋෝ,೸෡൯ ߤ̂
ᇱݓ െ  (3) ݓ෠ߑᇱݓߚ

 
For a feasible portfolio ݓ of problem (3), let  
 

௜ܺ,௝ 	ൌ 	,௜,௝ݎᇱݓ	

തܺ௜ 	ൌ 	
1
ܬ
෍ ௜,௝ݎᇱݓ

௃

௝ୀଵ
ൌ
1
ܬ
෍ ௜ܺ,௝

௃

௝ୀଵ
,	
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௜ܵ
ଶ 	ൌ 	

1
ܬ െ 1

ᇱݓ ቆ෍ ൫ݎ௜,௝ െ ௜,௝ݎ௜൯൫ߤ̂ െ ′௜൯ߤ̂
௃

௝ୀଵ
ቇݓ ൌ

1
ܬ െ 1

෍ ൫ ௜ܺ,௝ െ തܺ௜൯
ଶ௃

௝ୀଵ
. 

 

In addition, let ߤ ൌ ॱ ௜ܺ,௝, ߪଶ ൌ ॱൣ ௜ܺ,௝ െ ൧ߤ
ଶ
ଷߤ , ൌ ॱൣ ௜ܺ,௝ െ ൧ߤ

ଷ
 and ߤସ ൌ ॱൣ ௜ܺ,௝ െ ൧ߤ

ସ
. Also, for 

݅ ൌ 1,… ,  we define ,ܫ
 

௜݂ሺݓሻ ≔ ௜ߤ̂
ᇱݓ െ ݓ෠௜ߑᇱݓߚ ൌ തܺ௜ െ ߚ ௜ܵ

ଶ,	
݂ሺݓሻ ≔ minሺఓෝ,෡ఀሻ∈௎൫ഋෝ,೸෡൯ ߤ̂

ᇱݓ െ ݓ෠ߑᇱݓߚ ൌ min
௜ ௜݂ሺݓሻ. 

We first give a limit result for ௜݂ሺݓሻ when ܬ → ∞. 
 
Theorem 2.1 For every ݓ ∈  one has ,ܥ
 

ඥܬሾ ௜݂ሺݓሻ െ ॱ ௜݂ሺݓሻሿ
ௗ
→ ܰሺ0, ଶߪ െ ସߪଶߚ െ ଷߤߚ2 ൅ ܬ ସሻ forߤଶߚ → ∞. 

 
Proof Consider  
 

ඥܬሾ ௜݂ሺݓሻ െ ॱ ௜݂ሺݓሻሿ	

ൌ ඥܬ ቆ തܺ௜ െ
ߚ

ܬ െ 1
෍ ൫ ௜ܺ,௝ െ തܺ௜൯

ଶ

௝
ቇ െ ඥܬሺߤ െ 	ଶሻߪߚ

ൌ ඥܬ ቈ തܺ௜ െ
ߚ
ܬ
ቊ෍ ൣ൫ ௜ܺ,௝ െ ൯ߤ െ ሺ തܺ௜ െ ሻ൧ߤ

ଶ

௝
൅ ௜ܵ

ଶቋ቉ െ ඥܬሺߤ െ 	ଶሻߪߚ

ൌ ඥܬ ቈ തܺ௜ െ
ߚ
ܬ
ቊ෍ ൫ ௜ܺ,௝ െ ൯ߤ

ଶ

௝
െ ሺܬ2 തܺ௜ െ ሻଶߤ ൅ ሺܬ തܺ௜ െ ሻଶߤ ൅ ௜ܵ

ଶቋ቉ െ ඥܬሺߤ െ 	ଶሻߪߚ

ൌ ඥܬ ቈ
1
ܬ
෍ ௜ܺ,௝

௝
െ
ߚ
ܬ
෍ ൫ ௜ܺ,௝ െ ൯ߤ

ଶ

௝
൅ ሺߚ തܺ௜ െ ሻଶߤ െ

ߚ
ܬ ௜ܵ

ଶ቉ െ ඥܬሺߤ െ 	ଶሻߪߚ

ൌ ඥܬ ቈ
1
ܬ
෍ ቄ ௜ܺ,௝ െ ൫ߚ ௜ܺ,௝ െ ൯ߤ

ଶ
ቅ

௝
െ ሺߤ െ ଶሻ቉ߪߚ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ሺ௔ሻ

൅ ඥߚܬሺ തܺ௜ െ ሻଶᇣᇧᇧᇧᇤᇧᇧᇧᇥߤ
ሺ௕ሻ

െ
ߚ

ඥܬ
௜ܵ
ଶ

ᇣᇤᇥ
ሺ௖ሻ

. 

 

Since ॱ ቂ
ଵ

௃
∑ ቄ ௜ܺ,௝ െ ൫ߚ ௜ܺ,௝ െ ൯ߤ

ଶ
ቅ௝ ቃ ൌ ߤ െ ଶ, by the Central Limit Theorem (CLT), ሺܽሻߪߚ

ௗ
→ ܰ ቀ0, ॽar ቂ ௜ܺ,௝ െ ൫ߚ ௜ܺ,௝ െ ൯ߤ

ଶ
ቃቁ. Next, Since തܺ௜ െ ߤ

௉
→0 by the Weak Law of Large 

Numbers, and ඥܬሺ തܺ௜ െ ሻߤ
ௗ
→ܰሺ0, ଶሻ by CLT, by Slutzky’s Theorem, ሺܾሻߪ

ௗ
→ 0. Finally, since 

ଵ

√௃
→ 0 and ௜ܵ

ଶ ௉
ଶ, ሺܿሻߪ→

௉
→0. Thus, again by Slutzky’s Theorem,  

 

ඥܬሾ ௜݂ሺݓሻ െ ॱ ௜݂ሺݓሻሿ
ௗ
→ ܰ ቀ0, ॽar ቂ ௜ܺ,௝ െ ൫ߚ ௜ܺ,௝ െ ൯ߤ

ଶ
ቃቁ. 
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Since ԧov ቂ ௜ܺ,௝, ൫ ௜ܺ,௝ െ ൯ߤ
ଶ
ቃ ൌ ଷ and ॽarߤ ቂ൫ ௜ܺ,௝ െ ൯ߤ

ଶ
ቃ ൌ ସߤ െ   ,ସߪ

 

ॽar ቂ ௜ܺ,௝ െ ൫ߚ ௜ܺ,௝ െ ൯ߤ
ଶ
ቃ ൌ ॽarൣ ௜ܺ,௝൧ െ ԧovߚ2 ቂ ௜ܺ,௝, ൫ ௜ܺ,௝ െ ൯ߤ

ଶ
ቃ ൅ ଶॽarߚ ቂ൫ ௜ܺ,௝ െ ൯ߤ

ଶ
ቃ	

ൌ ଶߪ െ ଷߤߚ2 ൅ ସߤଶߚ െ  .ସߪଶߚ
 

This yields ඥܬሾ ௜݂ሺݓሻ െ ॱ ௜݂ሺݓሻሿ
ௗ
→ ܰሺ0, ଶߪ െ ସߪଶߚ െ ଷߤߚ2 ൅  ∎		.ସሻߤଶߚ

 
The following is a limit result for ݂ሺݓሻ when ܫ, ܬ → ∞. 
 

Theorem 2.2  Let ߤ௙ ൌ ߤ െ ௙ߪ ଶ andߪߚ ൌ ቂ
ଵ

௃
ሺߪଶ െ ସߪଶߚ െ ଷߤߚ2 ൅ ସሻቃߤଶߚ

ଵ/ଶ
. Then, one has 

 

lim
ூ,௃→ஶ

ℙ ቈඥ2 log ܫ ቆ
݂ሺݓሻ െ ௙ߤ

௙ߪ
ቇ ൅ log

ଶܫ

൫2√ߨ log ൯ܫ
൒ ቉ݔ ൌ expሾെ expሺݔሻሿ. 

 
Proof Since ݂ሺݓሻ ൌ min

௜ ௜݂ሺݓሻ and the ௜݂ሺݓሻ’s are i.i.d., if each ௜݂ሺݓሻ were normal, ݂ሺݓሻ 

would be the smallest order statistic of a normal random variable with mean ߤ௙ and variance ߪ௙
ଶ. 

Wilks (1948) has shown that the largest order statistic ܼሺூሻ from ܫ standard normal samples 

satisfies the limiting distribution:  
 

lim
ூ→ஶ

ℙ ቈඥ2 log ܫ ܼሺூሻ െ log
ଶܫ

൫2√ߨ log ൯ܫ
൑ ቉ݔ ൌ expሾെ expሺെݔሻሿ. 

 
Consequently, by symmetry, for the smallest order statistic ܼሺଵሻ, we have  

 

lim
ூ→ஶ

ℙ ቈඥ2 log ܫ ܼሺଵሻ ൅ log
ଶܫ

൫2√ߨ log ൯ܫ
൒ െݔ቉ ൌ expሾെ expሺെݔሻሿ. 

 
By Theorem 2.1, it follows that  
 

ℙ ቈඥ2 log ܫ ቆ
݂ሺݓሻ െ ௙ߤ

௙ߪ
ቇ ൅ log

ଶܫ

൫2√ߨ log ൯ܫ
൒ െݔ቉ → expሾെ expሺെݔሻሿ 

 
for ܫ, ܬ → ∞, which completes the proof. ∎ 
 
The following theorem is the main finding of our study and shows that formulation (3) is likely 
to prefer portfolio returns with higher skewness and lower kurtosis. 
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Theorem 2.3 Consider two feasible portfolios ݓଵ and ݓଶ for problem (3) whose returns have the 
same expectation and variance. Moreover, assume that ݓଵ has larger skewness and smaller 

kurtosis than ݓଶ. More specifically, for ௜ܺ,௝
௞ 	ൌ ሺݓ௞ሻᇱݎ௜,௝, ݇ ൌ 1, 2, it is assumed that 

 

ߤ ≔ ॱൣ ௜ܺ,௝
ଵ ൧ ൌ ॱൣ ௜ܺ,௝

ଶ ൧	

ଶߪ ≔ ॱൣ ௜ܺ,௝
ଵ െ ॱ ௜ܺ,௝

ଵ ൧
ଶ
ൌ ॱൣ ௜ܺ,௝

ଶ െ ॱ ௜ܺ,௝
ଶ ൧

ଶ
	

ଷߤ
ଵ ≔ ॱൣ ௜ܺ,௝

ଵ െ ॱ ௜ܺ,௝
ଵ ൧

ଷ
൒ ॱൣ ௜ܺ,௝

ଶ െ ॱ ௜ܺ,௝
ଶ ൧

ଷ
≔ ଷߤ

ଶ	

ସߤ
ଵ ≔ ॱൣ ௜ܺ,௝

ଵ െ ॱ ௜ܺ,௝
ଵ ൧

ସ
൑ ॱൣ ௜ܺ,௝

ଶ െ ॱ ௜ܺ,௝
ଶ ൧

ସ
≔ ସߤ

ଶ, 

 
where at least one of two inequalities is strict. Then for ߤ௙ ≔ ॱሾ݂ሺݓଵሻሿ ൌ ॱሾ݂ሺݓଶሻሿ ൌ ߤ െ  ,ଶߪߚ
one has  
 

ℙൣ݂ሺݓଵሻ ൒ ,௙൧ߤ ℙൣ݂ሺݓଶሻ ൒ ௙൧ߤ → 0	for	ܫ, ܬ → ∞, 
 
and for ݕ ൏  ,large enough ܬ ,ܫ ௙, andߤ

 
ℙሾ݂ሺݓଵሻ ൒ ሿݕ ൐ 	ℙሾ݂ሺݓଶሻ ൒  .ሿݕ

 

Proof Denote ߪ௙
௞ ൌ ௞ߟ where ,ܬ௞/ඥߟ ൌ ටߪଶ െ ସߪଶߚ െ ଷߤߚ2

௞ ൅ ସߤଶߚ
௞. We know from Theorem 

2.2 that for large ܫ and ܬ, ℙሾ݂ሺݓଵሻ ൒ ሿ is close to expൣെݕ exp൫ݔூ,௃
௞ ൯൧, where 

 

ூ,௃ݔ
௞ ≔ ඥ2 log ܫ ඥܬ ൬

ݕ െ ௙ߤ
௞ߟ

൰ ൅ log
ଶܫ

ߨ√2 log ܫ
. 

 

In particular, ℙൣ݂ሺݓ௞ሻ ൒ ,ܫ ௙൧ tends to zero forߤ ܬ → ∞. Moreover, since ߟଵ ൏  ଶ, one obtainsߟ

 

ூ,௃ݔ
ଶ െ ூ,௃ݔ

ଵ ൌ ඥ2 log ܫ ඥܬ൫ߤ௙ െ ൬	൯ݕ
1
ଵߟ
െ
1
ଶߟ
൰ 	for	ݕ ൏  ,௙ߤ

 
from which it follows that ℙሾ݂ሺݓଵሻ ൒ ሿݕ ൐ 	ℙሾ݂ሺݓଶሻ ൒  ∎ .ܬ ,ܫ ሿ for large enoughݕ
 
Theorem 2.3 implies that, if the joint uncertainty set ܷሺఓෝ,෡ఀሻ contains a large number of pairs of 

sample means and sample covariances, and also each pair of sample mean and sample 
covariance is obtained from a large number of samples, problem (3) is likely to favor a portfolio 
with high skewness and low kurtosis, a desired property sought by investors.   
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Intuitively speaking, as a portfolio ݓ becomes more positively skewed, ௜݂ሺݓሻ ൌ തܺ௜ െ ߚ ௜ܵ
ଶ 

becomes less dispersed. More specifically, since ԧovሾ തܺ௜, ௜ܵ
ଶሿ ൌ  a sample ,(Zhang, 2007) ܬ/ଷߤ

variance from a more positively skewed portfolio tends to increase as the realized value of the 
corresponding sample mean increases. Thus, തܺ௜ and െߚ ௜ܵ

ଶ tend to move in opposite directions, 
causing a “diversification effect” between the two terms. Thus, the worst case solution of 
problem (3) gets better as the portfolio becomes more skewed, ultimately enforcing problem (3) 
more likely to favor portfolios that are more skewed.   
 

   
Figure 1: Sample means and sample variances of skew normal random variables  

While the first two moments of the random variables represented by two figures above are identical, the 
one in the left figure is positively skewed whereas the one in the right figure is negatively skewed. Dotted 
lines represent the indifference curves for the objective function of problem (3) when ߚ ൌ 1 . 
Consequently, the solution for the inner problem of (3) gets worse as more points appear in the north-
west region. A positively skewed portfolio (left) is less likely to have points in the north-west region 
than a negatively skewed portfolio (right). Thus it is likely to have a higher value. See Azzalini and Dalla 
Valle (1996) and Azzalini and Capitanio (1999) for the details of skew normal distribution. 

 

Figure 1 graphically illustrates the reasoning above, that is, the value of problem (3) is likely to 
be higher for a positively skewed portfolio (left figure) than for a negatively skewed one (right 
figure), thus is preferred by the robust approach as described above.   
 
The same intuition holds for the kurtosis. The worst case solution tends to get worse as the 

variance of ௜݂ሺݓሻ increases, and because ॽarሾ ௜ܵ
ଶሿ ൌ ସߤ െ  ସ, a portfolio with a heavy tailedߪ

return distribution is penalized by problem (3). 
 
Theorem 2.3 provides a theoretical explanation of the findings of Martin, Clark and Green 
(2010). They advocate the use of robust statistics in portfolio optimization, arguing that they can 
provide reliable identification of outliers. Our results show that robust portfolios tend to produce 
return distributions with thinner tails than their non-robust counterparts and are thus less likely to 
be affected by the outliers. 
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We conclude this section with the following theorem which guarantees that one can easily obtain 
the solution for problem (3). 
 
Theorem 2.4 If ܥ is defined only with a finite number of linear constraints, the solution for 
problem (3) can be obtained by solving a convex quadratically constrained quadratic program 
(QCQP) problem:  

max
୵∈஼,୸

	ݖ							

	s. t.										ݖ ൑ ௜ߤ̂
ᇱݓ െ ݅ for			 ݓ෠௜ߑᇱݓߚ ൌ 1,… , 	ܫ

Proof is omitted as it is well known that linear program with quadratic constraints can be 
efficiently solved by Newton-type algorithms. See Boyd and Vandenberghe (2004). ∎ 
 
3. Empirical Analysis 
 
In our empirical analysis, we construct both mean-variance optimal portfolios and robust 
portfolios with daily returns of the 10 industry portfolios for the years ranging from 1983 to 2012 
used in a series of papers by Fama and French, yielding 7,566 days in total. The data set is 
obtained from the online data library of Kenneth R. French2. To solve problem (3), we solve the 
equivalent convex QCQP formulation as given in Theorem 2.4. As for the solver, we employ 
CVX, a package for specifying and solving convex programs by CVX Research Inc. (2011) and 
Grant and Boyd (2008). The computation times are not reported because they are trivial in all 
cases. Table 1 provides summary statistics for the 10 industry portfolios along with the U.S. 
market portfolio which is also obtained from French’s database. 
 
Table 1: Summary statistics of 10 industry portfolios with market portfolio based on daily returns 

Moments 
First  

ሺൈ 10ିସሻ 
Second Central 
ሺൈ 10ିସሻ 

Third Central 
ሺൈ 10ି଻ሻ 

Fourth Central
ሺൈ 10ି଻ሻ 

Market 2.97 1.26 -9.02 3.00 
Consumer Non-Durables 4.07 0.93 -6.94 2.04 

Consumer Durables 2.52 2.24 -11.34 5.67 
Manufacturing 3.60 1.34 -13.97 4.05 

Oil, Gas, and Coal Extraction and Products 4.21 2.14 -8.10 8.67 
Business Equipment 2.96 2.59 -1.91 7.93 

Telephone and Television Transmission 3.08 1.62 -2.58 4.02 
Wholesale, Retail, and Some Services 3.51 1.40 -6.03 2.75 

Healthcare, Medical Equipment, and Drugs 3.61 1.35 -9.36 2.90 
Utilities 3.00 0.95 -0.37 2.17 
Other 2.86 1.72 -5.82 4.91 

 
We conduct three sets of empirical tests to see if the claims in the previous section hold. More 
specifically, we compare third and fourth moments of mean-variance optimal portfolios and 

                                                            
2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  
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robust portfolios by varying (1) ߚ: risk aversion parameter, (2) ܫ: number of pairs of sample 
means and sample covariance matrices in the uncertainty set, and (3)	ܬ: number of daily returns 
used to obtain sample mean and sample covariance matrix. The parameters for the base case are 
set as follows: ߚ ൌ ܫ ,1 ൌ 100, and ܬ ൌ 1000.   
 
Figure 2 illustrates the results for the base case. We construct 100 robust portfolios along with 
the mean-variance optimal portfolio whose parameters are obtained from the whole sample data. 
Each dot in Figure 2 represents the pair of third and fourth central moments for each robust 
portfolio estimated over the whole sample period. Of 100 robust portfolios constructed, 100 have 
higher third central moments and lower fourth central moments, indicating that problem (3) 
indeed favors skewness and penalizes kurtosis. 
 

 
Figure 2: Test results for based case (ߚ ൌ ܫ ,1 ൌ 100, and ܬ ൌ 1000) 

 
Figure 3 depicts the test results when ܫ ,ߚ and ܬ are varied while other parameters are set as the 
base case. Panel A illustrates that, in most of the cases, the robust portfolios dominate the mean-
variance optimal portfolios in both moments (that is, higher third central moment and lower 
fourth central moment), indicating that our argument is insensitive to the changes in ߚ. Panels B 
and C summarize the results when the values of ܫ and ܬ are varied respectively. These results 
depict that the robust portfolios are likely to have better third and fourth central moments than 
the mean-variance as ܫ and ܬ increase, as proved in Theorem 2.3. 
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Panel A: ߚ is varied from 0.1 to 2 while ܫ and ܬ are set to the base case (X-axis: ߚ)  

 
Panel B: ܫ is varied from 10 to 200 while ߚ and ܬ are set to the base case (X-axis: ܫ) 

 
Panel C: ܬ is varied from 200 to 2000 while ߚ and ܫ are set to the base case (X-axis: ܬ) 

Figure 3: Test results when ߚ (Panel A), ܫ (Panel B) and ܬ (Panel C) are varied 
This figure depicts the test results when ܫ ,ߚ and ܬ are varied while other parameters are set as the base 
case. Similar to Figure 2, for each value of ߚ (ܫ or ܬ), we construct 100 robust portfolios along with the 
mean-variance optimal portfolio, and compare their third and fourth central moments. The black solid 
line exhibits, out of 100 tests, the number of cases that the robust portfolios dominate the mean-variance 
portfolio in both third and fourth central moments. The blue dots and red dotted line represent the number 
of cases that the robust portfolios have higher third central moments, and lower fourth central moments, 
respectively. The blue dotted line with circles illustrates the number of cases that the robust portfolios 
are dominated by the mean-variance portfolio in both third and fourth central moments.   

 
 
4. Conclusions and Future Directions 
 
In this paper, we demonstrate mathematically that if the uncertainty sets are properly 
constructed, robust portfolios based on the worst-case approach under the mean-variance setting 
favors skewness and penalizes kurtosis. Based on this finding, we propose a new mean-variance 
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approach that can control portfolio skewness and kurtosis without imposing higher moment 
terms. The empirical evidence presented supports this finding. 
 
One promising direction is to link the findings of this study to research utilizing L-moments and 
trimmed L-moments for financial applications such as Darolles, Gourieroux and Jasiak (2009), 
Qin (2012), and Yanou (2013). One of the main findings of this study is that the performance of 
a robust portfolio is closely related to the distribution of the smallest order statistic. It has been 
shown that the portfolios constructed with L-moments, which also are closely related to order 
statistics, yield robust performance. Therefore, investigation of the link between the two would 
be insightful. 
 
Another direction for research is to extend the main idea of this study to moments higher than the 
fourth moment. As illustrated by Eeckhoudt and Schlesinger (2006) from a behavioral finance 
perspective, the derivatives of the expected utility functions alternate in sign. Consequently, if 
the same argument holds for higher moments in a recursive fashion, it is possible to create a 
generalized portfolio construction framework in which higher moments can be controlled with 
less computational cost than traditional approaches. 
 
Finally, the empirical study in this paper can be extended to see if the proposed approach can 
improve the investment performance in a conventional sense. Our empirical study shows that the 
robust portfolios have better characteristics than the traditional mean-variance portfolios in terms 
of higher moments. However, this does not mean that robust portfolios outperform their non-
robust counterparts. This warrants a set of comprehensive empirical tests to confirm if the newly 
proposed approach yields better investment performance. 
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